Secretin stimulates exocytosis in isolated bile duct epithelial cells by a cyclic AMP-mediated mechanism.
نویسندگان
چکیده
Intrahepatic bile duct epithelial cells, or cholangiocytes, contribute to bile secretion in response to hormones, including secretin. However, the mechanism by which secretin stimulates ductular bile flow is unknown. Since recent data in nonhepatic epithelia have suggested a role for exocytosis in fluid secretion, we tested the hypothesis that secretin stimulates exocytosis by isolated cholangiocytes. Cholangiocytes were isolated from normal rat liver by a newly described method employing enzymatic digestion and mechanical disruption followed by immunomagnetic separation using specific monoclonal antibodies, and exocytosis was measured using a fluorescence unquenching assay employing acridine orange. Secretin caused a dose-dependent (10(-12)-10(-7) M) increase in acridine orange fluorescence by acridine orange-loaded cholangiocytes with a peak response at 10 min; the half-maximal concentration of secretin was 7 x 10(-9) M. The secretin effect was inhibited by preincubation of cholangiocytes with colchicine (30% inhibition, p less than 0.05) or trypsin (90% inhibition, p less than 0.001); no inhibition was seen with lumicolchicine and heat-inactivated trypsin. Cholecystokinin, insulin, and somatostatin had no effect on fluorescence of acridine orange-loaded cholangiocytes; secretin had no effect on fluorescence of acridine orange-loaded hepatocytes or hepatic endothelial cells. Exposure of isolated cholangiocytes to secretin at doses that stimulated exocytosis caused a dose-dependent increase in cyclic AMP levels (218% maximal increase, p less than 0.05); moreover, an analogue of cyclic AMP stimulated exocytosis by cholangiocytes. Secretin had no effect on intracellular calcium concentration using Fura-2-loaded cholangiocytes assessed by digitized video microscopy. Our results demonstrate, for the first time, that secretin stimulates exocytosis by rat cholangiocytes. The effect is cell- and hormone-specific, dependent on intact microtubules, on a protein(s) on the external surface of cholangiocytes, and on changes in cellular levels of cyclic AMP. The results are consistent with the hypothesis that secretin-induced changes in bile flow may involve an exocytic process.
منابع مشابه
Somatostatin stimulates ductal bile absorption and inhibits ductal bile secretion in mice via SSTR2 on cholangiocytes.
With an in vitro model using enclosed intrahepatic bile duct units (IBDUs) isolated from wild-type and somatostatin receptor (SSTR) subtype 2 knockout mice, we tested the effects of somatostatin, secretin, and a selective SSTR2 agonist (L-779976) on fluid movement across the bile duct epithelial cell layer. By RT-PCR, four of five known subtypes of SSTRs (SSTR1, SSTR2A/2B, SSTR3, and SSTR4, but...
متن کاملSecretin promotes osmotic water transport in rat cholangiocytes by increasing aquaporin-1 water channels in plasma membrane. Evidence for a secretin-induced vesicular translocation of aquaporin-1.
Although secretin is known to stimulate ductal bile secretion by directly interacting with cholangiocytes, the precise cellular mechanisms accounting for this choleretic effect are unknown. We have previously shown that secretin stimulates exocytosis in cholangiocytes and that these cells transport water mainly via the water channel aquaporin-1 (AQP1). In this study, we tested the hypothesis th...
متن کاملThe alpha2-adrenergic receptor agonist UK 14,304 inhibits secretin-stimulated ductal secretion by downregulation of the cAMP system in bile duct-ligated rats.
Secretin stimulates ductal secretion by activation of cAMP --> PKA --> CFTR --> Cl(-)/HCO(3)(-) exchanger in cholangiocytes. We evaluated the expression of alpha(2A)-, alpha(2B)-, and alpha(2C)-adrenergic receptors in cholangiocytes and the effects of the selective alpha(2)-adrenergic agonist UK 14,304, on basal and secretin-stimulated ductal secretion. In normal rats, we evaluated the effect o...
متن کاملCholangiocyte anion exchange and biliary bicarbonate excretion.
Primary canalicular bile undergoes a process of fluidization and alkalinization along the biliary tract that is influenced by several factors including hormones, innervation/neuropeptides, and biliary constituents. The excretion of bicarbonate at both the canaliculi and the bile ducts is an important contributor to the generation of the so-called bile-salt independent flow. Bicarbonate is secre...
متن کاملRegulation of exocytosis by purinergic receptors in pancreatic duct epithelial cells.
In epithelial cells, several intracellular signals regulate the secretion of large molecules such as mucin via exocytosis and the transport of ions through channels and transporters. Using carbon fiber amperometry, we previously reported that exocytosis of secretory granules in dog pancreatic duct epithelial cells (PDEC) can be stimulated by pharmacological activation of cAMP-dependent protein ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 267 22 شماره
صفحات -
تاریخ انتشار 1992